High silicon self-diffusion coefficient in dry forsterite

Tomoo Katsuraa, Hongzhan Feia, Chamathni Hegodab, Daisuke Yamazakib, Michael Wiedenbeckc, Hisayoshi Yurimotod, Svyatoslav Shchekaa,

aBayerisches Geoinstitut, University of Bayreuth, Germany
bInstitute for Study of the Earth’s Interior, Okayama University, Japan
cHelmholtz Centre Potsdam, Germany
dDepartment of Natural History Sciences, Hokkaido University, Japan

2012.12.05
Introduction:

D_{Si} in Fo

Olivine: the main upper mantle constituent.
- ~60% in volume (Ringwood, 1991)

Forsterite: Mg-rich end member of olivine.
- Similar rheology properties as Ol (Durham and Goetze, 1977)

Plastic deformation: controlled by
- Diffusion creep and dislocation creep
- controlled by diffusion (Weertman, 1999; Frost, H.J., Ashby, M.F., 1982)

Si: rate controlling element.
- Slowest diffuse species
 (Costa and Chakraborty, 2008; Shimojuku et al., 2009; Dobson et al., 2008)

D_{Si} in Fo: essential for understanding the upper mantle rheology.
Introduction: previous studies

D_{Si} in dry OI at 1 atm

$\log D_{Si} (m^2/s)$

-22.5

OI (Dohmen et al., 2002)

Fo (Jaoul et al., 1981)

1600 K
1 atm
Dry
Introduction: previous studies

D_{Si} in dry Ol at 1 atm

Large discrepancy between measured D_{Si} from diffusion experiments and estimated from deformation experiments.

--- ~ 2 -- 3 orders of magnitude
Introduction: previous studies

\(D_{Si} \) in dry \(OI \) at high \(P \)

Large discrepancy between high pressures and ambient pressure.
This study

Determine D_{Si}

Sample
- *Fo* single crystal
- Fine polished

Deposition
- 29Si enriched Mg$_2$SiO$_4$

Annealing
- 1 atm -- 13 GPa
- 1600 & 1800 K
- Dry ($C_{H2O} < 1$ ppm)

 Even 10 ppm H$_2$O largely enhances D_{Si}

 (Costa & Chakraborty, 2008)

SIMS (Secondary ion mass spectrometry)
- Obtain diffusion profile

Introduction:

- Determine D_{Si}
- Obtain diffusion profile
Sample

Synthetic Fo (Mg$_2$SiO$_4$)

--Major impurity: Ir (~80 ppm) by ICP-MS

--cored into disks

--1 mm thickness, 1 mm diameter

--normal to b-axis

(longest crystallographic axis)

Experimental methods

Fo single crystal
Experimental methods

Deposition

Thin film deposition:
-- ^{29}Si enriched Mg_2SiO_4 film
-- Thickness: ~ 300-500 nm
-- Covered by ~ 100 nm ZrO_2
-- Pulsed laser deposition technique (PLD)

Pulsed laser deposition system at Ruhr University of Bochum
Annealing

--- Multi-anvil or ambient \(P \) furnace apparatus
--- 0 - 13 GPa
--- 1600 & 1800 K
--- 0 - 41 h

(Fei et al., EPSL, 2012)
Experimental methods

SIMS analysis

Cameca IMS-6f
(Helmholtz Centre Potsdam)

Crater after SIMS analysis

Principle of SIMS

Example of diffusion profile

$$c = \frac{c_0 - c_1}{2} erf\left(\frac{x-h}{\sqrt{4Dt - L^2(\sigma)}}\right) + \frac{c_0 + c_1}{2}$$
Results

FT-IR spectrum

Absorption (cm$^{-1}$)

Wave number (cm$^{-1}$)

Without annealing, $C_{H_2O} < 1$ ppm

3 GPa, 1600 K, $C_{H_2O} < 1$ ppm

1 GPa, 1600 K, $C_{H_2O} < 1$ ppm

No determinable water by FT-IR
Results

$D_{Si} \text{ vs } P \text{ in } Fo$

- Negative P dependence of D_{Si}.
- $\Delta V = 1.7 \pm 0.4 \text{ cm}^3/\text{mol}$. $\Delta E = 410 \pm 30 \text{ kJ/mol}$.

$D_{Si} = A_0 \exp\left(-\frac{\Delta E + P\Delta V}{RT}\right)$
Compare with previous D_{Si}

D_{Si}: 2--3 orders of magnitude higher than previous D_{Si}.

- **No ZrO$_2$** film was used in Jaoul (1981) and Dohmen (2002).
- **Large deformation of isotopically enriched film.**

Without ZrO$_2$ film
Horizontal shrink

With ZrO$_2$ film
Normal surface
Normal surface With ZrO$_2$, 1 atm, 1600 K

No ZrO$_2$, 1 atm, 1600 K

Isotopically enriched films horizontally shrank.
Profiles of \textit{none-ZrO}_2 \& \textit{with-ZrO}_2 \textit{samples}

\begin{itemize}
\item No ZrO\textsubscript{2}, horizontal move
\item 1 atm, 1600 K, \textbf{12} hours
\item With ZrO\textsubscript{2}, normal sample
\item 1 atm, 1600 K, \textbf{13} hours
\end{itemize}

(Fei et al., EPSL, 2012)
Role of ZrO$_2$

Profiles at 1 atm:
without ZrO$_2$ $<<$ with ZrO$_2$

Profiles at high P:
without ZrO$_2$ \approx with ZrO$_2$

Large difference is caused by:
Shrink of isotopically enriched thin film, not by presence of ZrO$_2$.
ZrO$_2$ prevents the horizontal shrink.

(Fei et al., EPSL, 2012)
Discussion ---2

\[D_{si} \text{ well explains creep rate} \]

- [O\text{I} (Estimated from deformation)] (Goetze & Kohlstedt, 1973)
- [O\text{I} (Dohmen et al. 2002)]
- \[F\text{o} \text{ (Jaoul et al. 1981)} \]

1600 K
1 atm
Dry
Discussion ---2

D_{si} well explains creep rate

- 2--3 orders of magnitude higher than previous studies of D_{si} at ambient P.
- Explains the high creep rate.
Discussion ---3

D_{si} in Fo, Wd, and Rw

- Linear relationship of D_{si} in Fo, Wd, and Rw.
- Effect of iron, water, and structural difference of (Mg,Fe)$_2$SiO$_4$ on D_{si} is small.

Figure:

- Fo (This study)
- Wd (S2009)
- Rw (S2009)

S2009: Shimojuku et al. (2009)
Iron and water bearing Wd and Rw.

(Fei et al., EPSL, 2012)
Discussion ---4

D_{si} and viscosity in the upper mantle

- Positive T dependence. Negative P dependence.
- D_{si} slightly increases with depth.
- η slightly decreases with depth.

(assuming inversely proportional to D_{si})

Based on adiabatic geothermal T from Katsura et al. (2010)
D_{si} in wadsleyite from Shimojuku et al. (2009)
Effect of water

D_{Si} in olivine
1473 K

"Dry", 1 atm

2 GPa

(Costa and Chakraborty, 2008)

(Dohmen et al., 2002)

Costa & Chakraborty (2008):
Large C_{H_2O} dependence of D_{Si}.
45 ppm H$_2$O => 3 log D_{Si}.

Discussion ---5
Effect of water

$D_{Si} \propto (C_{H_2O})^{0.32 \pm 0.07} \approx (C_{H_2O})^{1/3}$

1000 ppm H$_2$O \Rightarrow 1 log D_{Si}. Small C_{H_2O} dependence.

Discussion ---5

$D_{Si} = A_0 C_{H_2O}^r \exp(-\Delta H/RT)$

(Fei et al., Manuscript submitted)
Summary

1. **Negative P dependence** of D_{Si} in dry Fo (1 atm--13 GPa)
 - $\Delta V = 1.7 \pm 0.4 \text{cm}^3/\text{mol}$
 - $\Delta E = 410 \pm 30 \text{kJ/mol}$

2. D_{Si} **much higher** than previous studies at 1 atm
 - 2—3 orders of magnitude higher
 - Large deformation of coated film

3. **D_{Si} at 1 atm**
 - Explains the high creep rates in deformation studies

4. **D_{Si} and viscosity in the upper mantle:**
 - D_{Si} slightly increases with depth
 - η slightly decreases with depth

5. **Effect of H_2O on D_{Si} is very small:**
 - $1000 \mu g/g H_2O => 1 \log D_{Si} << 45 \text{ ppm} H_2O => 3 \log D_{Si}$
 - Effect of water on upper mantle rheology is very small based on Si self-diffusion coefficients.