High silicon self-diffusion coefficient in dry forsterite

H-Z. Fei1,2, C. Hegoda2, D. Yamazaki2, M. Wiedenbeck3, H. Yurimoto4, S. Shcheka1, and T. Katsura1

1BGI, Uni. Bayreuth, 2ISEI, Okayama U., 3GFZ Potsdam, 4Dept. Nat. Hist. Sci., Hokkaido U. (hongzhan.fe@uni-bayreuth.de)

Introduction
Diffusion coefficients of silicon (D_{Si}) in mantle minerals provide the basic understanding of rheology. Jaoul et al. (1981) and Dohmen et al. (2002) measured D_{Si} at ambient P in forsterite (Fo) and in natural olivine (Ol), respectively, providing results of ~2-3 orders of magnitude lower than that estimated from dislocation climb rates (Kohlstedt, 2006). In this study, we measured D_{Si} in dry Fo at 1600 and 1800 K, 0-13 GPa, and obtained a much higher D_{Si}, which well explains the high dislocation climb rates.

Experimental procedure
- **Sample**: Fo single crystal
- **Deposition**: Mg,30SiO$_3$ thin film (300-500 nm)
- **ZrO$_2$ thin film (~100 nm)
- **Annealing**: Multi-anvil & ambient P furnace
 - 1600 & 1800 K
 - 0 ~ 13 GPa
 - 0 ~ 41 hours
 - “Dry” condition (CO$_2$ < 1 ppm)
- **Polishing**: Reduce surface roughness
- **SIMS**: Cameca 6f with Cs$^+$ primary beam
- **Depth profiling mode**

Results
- **Negative pressure dependence of D_{Si} in forsterite.**
- $\Delta V = 1.7 \pm 2.3$ cm3/mol, $\Delta E = 407 \pm 50$ kJ/mol.

Discussion
- **Fig. 5. Large difference of diffusion profiles none/with ZrO$_2$**
- **Fig. 6. SEM image of cross section**

Conclusions
- **Negative P dependence of D_{Si}, with $\Delta V = 1.7 \pm 2.3$ cm3/mol.**
- **D_{Si} in dry Fo at ambient P is much higher than previous studies and consistent with dislocation climb rates.**
- **Effect of iron, water, and structural difference of (Mg,Fe)$_2$SiO$_4$ on D_{Si} is small.**
- **D_{Si} slightly increases with depth in the upper mantle.**
- **η slightly decreases or nearly constant with depth.**

Surface problem:
- **Fig. 2. Surface roughness after each step**
- **Surface roughness largely increased after diffusion annealing** (Fig. 2).
- **Solved by:**
 - **Careful polishing**
 - (in colloidal silica solution)
 - **Roughness calibration with linear relationship between nominal diffusion length and roughness** (Fig. 3).

Figures:
- **Fig. 1. coated samples and multi-anvil assembly**
- **Fig. 4. $\log D_{Si}$ with pressure**
- **Fig. 5. Large difference of diffusion profiles none/with ZrO$_2$**
- **Fig. 6. SEM image of cross section**
- **Fig. 3. nominal diffusion length in 0-time runs**
- **Fig. 7. D_{Si} in Fo, Ol, Wd & Rw**
- **Fig. 8. D_{Si} & η in the upper mantle**

Note: The figures and tables in the original document are not fully visible or legible in the text representation.